

An enantio- and stereocontrolled route to epopromycin B via cinchona alkaloid-catalyzed Baylis-Hillman reaction

Yoshiharu Iwabuchi, Tatsuya Sugihara, Tomoyuki Esumi and Susumi Hatakeyama*

Faculty of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan Received 24 August 2001; revised 6 September 2001; accepted 7 September 2001

Abstract—An enantio- and stereocontrolled route to epopromycin B having the epoxy-β-aminoketone pharmacophore is developed based on the *cinchona* alkaloid-catalyzed Baylis–Hillman reaction of N-Fmoc-leucinal. © 2001 Elsevier Science Ltd. All rights reserved.

Recently, we have developed a highly enantioselective asymmetric Baylis–Hillman reaction using a chiral amine catalyst 1 derived from quinidine and highly reactive 1,1,1,3,3,3-hexafluoroisopropyl acrylate (2). To explore the synthetic utility of our methodology, we envisaged its application towards the synthesis of the epoxy-β-aminoketone moiety 4 of epopromycin B (5),^{2,3} a novel plant cell wall synthesis inhibitor isolated from the culture broth of *Streptomyces* sp. NK0400. This densely

functionalized structural motif is also found in the proteasome inhibitors TMC-86 and TMC-96⁴ as well as angiostatic natural product eponemycin, and thus has attracted considerable attention as a promising pharmacophore. We describe herein the successful utilization of the *cinchona* alkaloid-catalyzed Baylis–Hillman reaction for the stereoselective construction of the α -methylene–statine framework 3, and its straightforward transformation to epopromycin B (5) (Scheme 1).

Scheme 1.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01676-8

^{*} Corresponding author. Tel.: +81-95-847-1111; fax: +81-95-848-4286; e-mail: susumi@net.nagasaki-u.ac.jp

Reaction of (S)-N-Fmoc-leucinal (S-6)⁸ with 1,1,1,3, 3,3-hexafluoroisopropyl acrylate **(2)** smoothly in the presence of a stoichiometric amount of the chiral amine catalyst 1 even at -55°C in DMF to give a 6:1 mixture of the ester 7 and the dioxanone 8.1,9 Without separation, this mixture was subjected to methanolysis to give two diastereomeric esters 9, $[\alpha]_D^{21}$ -7.0° (c 1.0, CHCl₃), and **10** in 70 and 2% yields, respectively. The syn-stereochemistry of the major product 9 was confirmed by NOESY experiment of the cyclic carbamate 11 derived from 9. HPLC analysis using a chiral column revealed both products were almost enantiomerically pure. It is interesting to note that the enantio-preference (R-selectivity)¹ of the chiral amine catalyst 1 matches well with S-configuration of the substrate to lead the high syn-selectivity.¹⁰

On the other hand, reaction of (R)-N-Fmoc-leucinal (R-6) under the same conditions turned out to occur very sluggishly and only a diastereomeric mixture of the dioxanones was obtained in low yield. Methanolysis of the mixture gave ent-9, $[\alpha]_D^{23}$ +7.2° (c 1.1, CHCl₃), and ent-10 in 12% and 6% yields in two steps, respectively (Scheme 2).

The following mechanistic consideration would rationalize the observed stereo- and enantioselectivity. (S)-N-Fmoc-leucinal (S-6) undergoes aldol reaction with the initially formed enolate in accordance with its inherent diastereofacial preference (si-face selectivity) to produce betaine intermediate A stabilized by an intramolecular hydrogen-bonding network. Since the conformation of A is nearly ideal for the subsequent E2

$$\begin{array}{c} C_2H_5 \\ \\ N \\ OH \\ \\ O$$

Scheme 3.

or E1cb reaction for stereoelectronic reasons¹³ as depicted in Newman projection **B**, facile elimination giving the *syn*-ester **7**, in turn, takes place. In the case of (R)-N-Fmoc-leucinal (R- $\mathbf{6})$, this aldehyde allows approach of the enolate from its re-face to produce betaine **C**, where the elimination reaction is retarded by the steric interaction as depicted in **D**. Thus, **C** reacts with a second (R)-N-Fmoc-leucinal (R- $\mathbf{6})$ to form dioxanone ent- $\mathbf{8}$ with releasing a 1,1,1,3,3,3-hexafluoroiso-propanol and $\mathbf{1}$ (Scheme 3).

With the Baylis–Hillman product **9** in hand in almost enantiomerically pure form, we then investigated its stereoselective transformation to the key precursor of epopromycin B. Dihydroxylation of **9** using a catalytic amount of OsO_4 in the presence of NMO^{14} proceeded smoothly with complete diastereoselectivity to afford the all-*syn* triol **12** as colorless crystals, mp 179–181°C, $[\alpha]_D^{25}$ –19.3° (c 0.21, MeOH), in quantitative yield. ¹⁵ Selective protection of the primary hydroxy group of **12** as its TBDMS ether, and reduction of the ester with LiBH₄ gave the triol **13**, $[\alpha]_D^{21}$ +9.7° (c 0.95, MeOH), in 70% yield. Finally, treatment of the diol **13** with diethyl azodicarboxylate in the presence of triphenylphosphine

in THF¹⁶ at 60°C furnished the epoxide **14**, $[\alpha]_D^{26} - 8.4^\circ$ (c 1.0, CHCl₃), the Dobler's key precursor of epopromycin B,³ in 60% yield. Furthermore, the Baylis–Hillman product **9** was also converted stereoselectively to **16**, $[\alpha]_D^{18} - 28.8^\circ$ (c 1.6, CHCl₃), in 73% in three steps, a key precursor of *epi*-epopromycin B which is known to exhibit other intriguing biological activities³ (Scheme 4).

In conclusion, we have developed an enantio- and stereocontrolled route to the key precursor **14** of epopromycin B starting from (S)-N-Fmoc-leucinal (S-6) in six steps in 29% overall yield. The present methodology should be applicable to the synthesis of the biologically interesting compounds related to epopromycin B.

Acknowledgements

This study received financial support from Uehara Memorial Foundation and Japan Society for the Promotion of Science (Grant-in Aid for Encouragement of Young Scientists).

Scheme 4.

References

- Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219– 10220.
- Isolation of epopromycin B: Tsuchiya, K.; Kobayashi, S.; Nishikiori, T.; Nakagawa, T.; Tatsuta, K. J. Antibiot. 1997, 50, 261–263.
- 3. Synthesis of epopromycin B: Dobler, M. R. *Tetrahedron Lett.* **2001**, 42, 215–218.
- Koguchi, Y.; Kohno, J.; Suzuki, S.; Nishio, M.; Takahashi, K.; Ohnuki, T.; Matsubara, S. J. Antibiot. 1999, 52, 1069–1076.
- 5. Sugawara, K.; Hatori, M.; Nishiyama, Y.; Tomita, K.; Kamei, H.; Konishi, M.; Oki, T. *J. Antibiot.* **1990**, *43*, 8–18.
- For the function of epoxy-β-aminoketone pharmacophores in 20S protesome inhibition, see: Groll, M.; Kim, K. B.; Kairies, N.; Huber, R.; Crews, C. M. J. Am. Chem. Soc. 2000, 122, 1237.
- The related synthetic studies: (a) Schmidt, U.; Schmidt, J. J. Chem. Soc., Chem. Commun. 1992, 529–530; (b) Hoshi, H.; Ohnuma, T.; Aburaki, S.; Konishi, M.; Oki, T. Tetrahedron Lett. 1993, 34, 1047–1050; (c) Sin, N.; Meng, L.; Auth, H.; Crews, C. M. Bioorg. Med. Chem. Lett.

- **1998**, *6*, 1209–1217; (d) Sin, N.; Kim, K. B.; Elofsson, M.; Meng, L.; Auth, H.; Kwok, B. H. K.; Crews, C. M. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2283–2288; (e) Elofsson, M.; Splittgerber, U.; Myung, J.; Mohan, R.; Crews, C. M. *Chem. Biol.* **1999**, *6*, 811–822.
- Wen, J. J.; Crews, C. M. Tetrahedron: Asymmetry 1998, 9, 1855–1858.
- 9. The dioxanones are often produced in the reactions using the reactive acrylates: (a) Drewes, S. E.; Emslie N. D.; Karodia, N.; Khan, A. A. *Chem. Ber.* **1990**, *123*, 1447; (b) Perlmutter, P.; Puniani, E.; Westman, G.; *Tetrahedron Lett.* **1996**, *37*, 1715.
- The conventional Baylis–Hillman reactions of N-protected α-aminoaldehydes with acrylates using DABCO or 3-quinuclidinol as catalyst resulted in poor diastereoselectivity (up to 7:3): (a) Ciganek, E. Org. React. 1997, 51, 201–350; (b) Manickum, T.; Roos, G. H. P. S. Afr. J. Chem. 1994, 47, 1–16.
- Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. Chem. 1990, 55, 1439–1446.
- 12. The crucial role of the phenolic hydroxy group of 1 in the rate-determining step was confirmed by the examination of structure–function correlation of the related chiral amine catalysts. See Ref. 1.

- 13. (a) Hoffmann, H. M. R.; Rabe, J. *Angew Chem.* **1983**, *89*, 795–796; (b) Deslongchamps, P. *Stereoelectronic Effects in Organic Chemistry*; Pergamon: Oxford, 1983; pp. 252–257
- 14. Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron
- Lett. 1976, 1973-1976.
- Markó, I. E.; Giles, P. R.; Janousek, Z.; Hindley, N. J.;
 Declercq, J.-P.; Tinant, B.; Feneau-Dupont, J.; Svendsen,
 J. S. Recl. Trav. Chim. Pays-Bas 1995, 114, 239–241.
- 16. Mitsunobu, O. Synthesis 1978, 1-28.